Дисперсионный анализ - Часть 16

Аналогично можно сравнивать между собой равны результативного признака, обусловленные воздействием всех возможных сочетаний факторов в рассматриваемом дисперсионной комплексе.

Дисперсионный анализ

Рис.20. Графическое изображение влияния факторов А и В при усредненном уровне фактора С

Таким образом, с помощью дисперсионного метода анализа можно определить не только долю действия исследуемых факторов на результативный признак, но и абсолютное изменение последнего под влиянием того или иного фактора и их взаимодействий.

Анализируя влияние факторов на результативный признак как отдельно, так и различных их сочетаний, нужно иметь в виду, что не исключены случаи, когда действие отдельных факторов очень мало влияет (или совсем не влияет) на результативный признак, тогда как влияние их взаимодействия весьма значителен.

Это объясняется это так. Влияние различных сочетаний факторов, изучаемых заметным образом проявляется только в тех случаях, когда разница в действии одного фактора при различных градациях другое. Особое влияние сочетаний в дисперсионной комплексе проявляется тогда, когда при одной градации первого фактора второй действует очень мало или даже отрицательно, а при другой градации - сильно и способствует позитивному направлению в изменении результативного признака. Например, изучая доходность какой - либо отрасли производства, можно обнаружить, что при одних, казалось бы, достаточных уровнях обеспеченности ее техникой, рабочей силой и т.д. - Отрасль убыточна, а при других уровнях (которые на первый взгляд кажутся недостаточными) наблюдается повышение доходности. В связи с этим возникает необходимость разоблачать и измерять степень влияния не только отдельных факторов, но также и их взаимодействий, как части общего суммарного воздействия.

Поскольку всегда есть некоторые различия в действиях одного фактора при различных уровнях (градациях) другого, суммарное влияние всех учтенных факторов в каждой подгруппе дисперсионного комплекса состоит из действий каждого фактора в отдельности и специфического влияния их сочетаний.

Необходимо помнить, что при анализе относительных характеристик дисперсионной модели возникает необходимость оценки достоверности полученных различий между частными средними.

foto_00016.jpg