Характеристика асимметрии и эксцесса - Часть 12

Ни одна из рассматриваемых ранее трех оценок не может дать необходимых дополнительных сведений об исследуемом параметр, как достаточное статистическая оценка.

Следовательно, средняя арифметическая выборочная ~ является несмещенной оценкой средней арифметической генеральной х. Фактор несмещенности этой оценки показывает: если с генеральной совокупности взять большое количество случайных выборок, то их средние * <отличались бы от генеральной средней в большую и меньшую сторону одинаково, то есть, свойство несмещенности хорошей оценки также показывает, что среднее значение бесконечно большого числа выборочных средних равна значению генеральной средней.

В симметричных рядах распределения медиана является несмещенной оценкой генеральной средней. А при условии, что численность выборочной совокупности приближается к генеральной (П ~ * N), медиана может быть в таких рядах и способной оценке генеральной середньои.Що касается критерия эффективности относительно медианы как оценки средней арифметической генеральной совокупности, можно доказать, что в выборках большого объема среднеквадратичная ошибка медианы (Стме) равна 1,2533 среднеквадратичной ошибки выборочной средней

2> <72

). Есть Стме *. Поэтому медиана не может быть эффективной оценке средней арифметической генеральной совокупности, поскольку ее средняя квадратическая ошибка больше средней квадратичной ошибки средней арифметической выборки. К тому же средняя арифметическая удовлетворяет условиям несмещенности и способности, а, следовательно, является лучшей оценкой.

Возможна и такая постановка. Может средняя арифметическая выборки быть несмещенной оценкой медианы в симметричных распределениях совокупности, для которой совпадают значения средней и медианы? И будет выборочная средняя способной оценке медианы генеральной совокупности? В обоих случаях ответ будет положительным. Для медианы генеральной совокупности (с симметричным распределением) средняя арифметическая выборки является несмещенной и согласованной оценкой.

Помня, что Стме ~ 1,2533 сти, приходим к выводу: средняя арифметическая выборки, а не медиана, более эффективной оценке медианы исследуемой генеральной совокупности.

foto_00013.jpg