Характеристика асимметрии и эксцесса - Часть 17

Если взять достаточно большое количество единиц выборки, то, пользуясь теоремой Ляпунова, можно доказать вероятность того, что ошибка выборки не превысит некоторую заданную величину а, т.е.

И ~ "*!" А или I № "рйА.

В частности, эта теорема дает возможность оценивать погрешности приближенных равенств:

- "Р (пи -частота) х "х. п

Если ^ * 2Xз ..., х-~ независимые случайные величины и п, то вероятность их средней (х) находится в пределах от а до 6 и может быть определена уравнениями:

р (а (х(Е)1 е 2сии,

- Е (х) _ в - Е (х) ДЕ ° а

Вероятность Р при этом называют доверительной вероятностью.

Таким образом, доверительной вероятностью (надежностью) оценки генерального параметра по выборочной оценке называют вероятностями, с которой осуществляются неравенства:

|~| <А, | и,-р | <д

где а - предельная ошибка оценки, согласно средней и доли.

Границы, в которых с этой заданной вероятностью может находиться генеральная характеристика называют доверительными интервалами (доверительными границами). А границы этого интервала получили название границ доверия.

Доверительные (или толерантные) границы - это границы, выход за пределы которых данной характеристикой вследствие случайных колебаний имеет незначительную вероятность (Л ^ 0,5; р2 <0,01; Л <0,001). Понятие "доверительный интервал" введено Дж.Нейман и К.Пирсоном (1950 г.). Это установленный по выборочным данным интервал, с заданной вероятностью (доверительной вероятностью) охватывает (покрывает) настоящее, но неизвестно для нас значение параметра. Если уровня доверительной вероятности принять значение 0,95, то эта вероятность свидетельствует о том, что при частых применениях данного способа (метода) вычислений доверительный интервал примерно в 95% случаев будет покрывать параметр. Доверительный интервал генеральной средней и генеральной доли определяется на основе приведенных выше неравенств, из которых

следует, что ~ _А-х-~ + А; № _А-р-№ + А.

В математической статистике надежность того или иного параметра оценивают по значению трех следующих уровней вероятности (иногда называют "пороги вероятности"): Л = 0,95; ^ 2 = 0,99; Р3 = 0,999.

foto_00062.jpg