Характеристика асимметрии и эксцесса - Часть 19

Таблица 40

Расчет точечных и интервальных ошибок выборки

Характеристика асимметрии и эксцесса

При организации выборки важное значение имеет определение необходимой ее численности (п). Последняя зависит от вариации единиц обследуемой совокупности. Чем больше коливнисть, тем большей должна быть численность выборки. Обратная связь между численностью выборки и ее предельной ошибкой. Стремление получить меньшую ошибку требует увеличения численности выборочной совокупности.

Необходимая численность выборки определяется на основе формул предельной ошибки выборки (д) с заданным уровнем вероятности (Р). Путем математических преобразований получают формулы расчета численности выборки (табл. 41).

Таблица 41

Расчет необходимой численности выборки_

Характеристика асимметрии и эксцесса

Следует отметить, что все изложенное относительно статистических оценок основывается на предположении, что выборочная совокупность, параметры которой используются при оценке, полученная с использованием метода (способа) отбора, который обеспечивает получение вероятностей выборки.

При этом, выбирая доверительную вероятность оценки, следует руководствоваться тем принципом, что выбор ее уровня не является математическим задачам, а определяется конкретно решаемой проблемой. В подтверждение сказанному рассмотрим пример.

Пример.Предположим, на двух предприятиях вероятность выпуска готовой (качественной) продукции равна Р = 0,999, то есть вероятность получения брака продукции составит а = 0,001. Можно ли в рамках математических рассуждений, не интересуясь характером продукции, решить вопрос о том, имела ли велика вероятность брака а = 0,001. Допустим, одно предприятие выпускает сеялки, а второе - самолеты для обработки посевов. Если на 1000 сеялок случится одна бракованная, то с этим можно мириться, потому переплав 0,1% сеялок дешевле, чем перестройка технологического процесса. Если же на 1000 самолетов встретится один бракованный, это, безусловно, приведет к серьезным последствиям при его эксплуатации. Итак, в первом случае вероятность получения бракаа =0,001 может приниматься, во втором случае - нет.

foto_00034.jpg