Предмет математической статистики - Часть 1

Основные задачи и методы математической статистики

Математическая статистика - это современная отрасль математической науки, которая занимается статистическим описанием результатов экспериментов и наблюдений, а также построением математических моделей, содержащих понятия вероятности. Теоретической базой математической статистики служит теория вероятностей.

В структуре математической статистики традиционно выделяют два основных раздела: описательная статистика и статистические выводы (рис. 1.1).

Предмет математической статистики

Рис. 1.1. Основные разделы математической статистики

Описательная статистика используется для:

- обобщение показателей одной переменной (статистика случайной выборки);

- выявление взаимосвязей между двумя и более переменными (корреляционно-регрессионный анализ).

Описательная статистика позволяет получить новую информацию, быстрее понять и всесторонне оценить ее, то есть выполняет научную функцию описания объектов исследования, чем и оправдывает свое название. Методы описательной статистики призваны превратить совокупность отдельных эмпирических данных на систему наглядных для восприятия форм и чисел: распределения частот; показатели тенденций, вариативности, связи. Этими методами рассчитываются статистики случайной выборки, которые служат основанием для осуществления статистических выводов.

Статистические выводы предоставляют возможность:

- оценить точность, надежность и эффективность выборочных статистик, найти ошибки, которые возникают в процессе статистических исследований (статистическое оценивание);

- обобщить параметры генеральной совокупности, полученные на основании выборочных статистик (проверка статистических гипотез).

Главная цель научных исследований - это получение нового знания о больших класса явлений, лиц или событий, которые принято называть генеральной совокупности.

Генеральная совокупность - это полная совокупность объектов исследования, выборка - ее часть, которая сформирована определенным научно обоснованным способом2.

Термин "генеральная совокупность" используется тогда, когда речь идет о большой, но конечную совокупность исследуемых объектов.

foto_00049.jpg