Регрессия - Часть 3

Уравнение такой множественной регрессии имеет вид:

? = Бухарест ■ X! + Б2 ■ X2 + Б0, (2.30)

где Б1 = ь1 o Зу / ^ Б 2 = Ь2 $ В / $ г ;, Б0 = В - Ах ■ X 1 - А2 o X2;

Ь1 = у1 ~ Гу2 o Г12) / (1 - Г122 ) ; Ь2 = (Гу2 "Гу1 'Г12) / (1" ^ 2)

зу, с1, с2, В, X1, X2 - стандартные отклонения и средние значения В, х1 и х2 ; Гу1, Гу2, г12 - коэффициенты парной корреляции Пирсона между В и Х1, У и Х2, Х1 и Х2. Для оценки связи, с одной стороны, переменной В, а с другой - двух переменных Х1 и Х2, используют коэффициент множественной корреляции:

Ку-1, 2 = Д/Ь1 o Гу1 + Ь2 o Гу2. (2.31)

Пример 2.11. Спрогнозировать зависимость переменной В от комбинации независимых зминнихХ1 и Х2 по эмпирическим данным рис. 2.65. Последовательность решения:

- Выполнить расчеты коэффициентов множественной регрессии и множественной корреляции (рис. 2.65 и 2.66):

- в ячейки В15: 015 внести = СРЗНАЧ (В3: В14), = СРЗНАЧ (С3: С14) и = СРЗНАЧ (03:014), получить средние значения В ~ 4,00, X ~ 5,83 и и2 = 3,17 ;

- в ячейки В16: 016 внести функции = СТАНДОТКЛОН (В3: В14),

= СТАНДОТКЛОН (С3: С14), = CTAHflOTFJIOH (D3: D14) и получить стандартные отклонения sy ~ 0,74; s1 ~ 2,17 и s2 ~ 1,11;

- в ячейках В17: В19 рассчитать коэффициенты парной корреляции Пирсона с помощью функции MS Excel = Пирсона () с соответствующими аргументами и получить следующие значения ry1 ~ 0,68; ry2 ~ 0,11 и r12 ~ -0,21;

- в ячейки В20 и В21 внести выражения = (B17-B18 * B19) / (1-B19A2) и = (B18-B17 * B19) / (1-B19A2), получить значение b1 ~ 0,74 и b2 ~ 0,27;

- в ячейки Е20: Е22 внести выражения = B20 * B16/C16, = B21 * B16/D16 и = B15-E20 * C15-E21 * D15, получить значения коэффициентов множественной регрессии В1 ~ 0,25; ^ 2 ~ 0,18 и В-0 ~ 1,97;

Регрессия

Рис. 2.65. Параметры регрессии и множественная корреляция Яу-1

- выполнить в ячейках Е3: Е14 расчеты теоретического значения 7 по уравнению множественной регрессии типа Г = 0,251 oX1 +0,18 oX2 +1,97. Для этого в ячейку Е3 внести выражение = $ Е $ 20 * C3 + $ Е $ 21 * Б3 + $ Е $ 22. Аналогичные выражения внести в ячейки Е4: Е14;

- в ячейку В22 внести выражение = КОРЕНЬ (В20 * В17 + В21 * В18) и получить значение коэффициента множественной корреляции Яу-1 ^ ~ 0,73.

foto_00005.jpg