Случайные величины - Часть 13

s2.

Рис. 3.26. Формулы расчета м [х] и 0 [Х] В таблице рис.3.27 показаны результаты расчета математического ожидания м [х] и дисперсии 0 [Х] по данным примера 3.14, а также гистограмму распределения м [х] = 4,00 (ячейка Е9) и дисперсия 0 [Х] = 1,00 (ячейка В9).

Математическое ожидание показывает, что значение случайной величины x группируются около значения 4,00, количество которых составляет 50% от общего количества. Однако, вокруг такого же значения могут группироваться и другие данные.

Случайные величины

Рис. 3.27. Таблица и гистограмма распределения с А / [Х] = 4,00 и £> [Х] = 1,00

С рис.3.28 видно, что для математического ожиданиям [х] = 4,00 дисперсия £> [Х] = 2,32 является вдвое большей, чем по данным рис. 3.27. О значительной изменчивости свидетельствует и соответствующая гистограмма.

Случайные величины

Рис. 3.28. Таблица и гистограмма распределения с М [Х] = 4,00 и £> [Х] = 2,32

Предлагаем сравнить таблицы и графики рис. 3.27 и 3.28 и сделать выводы. Свойства дисперсии случайной величины, постоянно используются в вероятностно-статистических методах:

- если x - случайная величина, а и Ь - некоторые числа, В = ах +Ь, то

D [ax + b] = A2D [X] (3.31)

(Это значит, что число а как параметр масштаба существенно влияет на дисперсию, тогда как число b - параметр сдвига на значение дисперсии не влияет);

- если X1, X2, Xn - попарно независимые случайные величины (т.е. Xt и X независимы для i Ф j), то дисперсия суммы равна сумме дисперсий

D [X1 + X2 + ... + Xn] = D [X1] + D [X2] + ... + D [Xn]. (3.32)

Соотношение относительно математического ожидания (3.25) и дисперсии (3.32) имеют важное значение при изучении выборочных свойств, поскольку результаты выборочных наблюдений или измерений рассматриваются в математической статистике, как реализации независимых случайных величин.

С дисперсией случайной величины тесно связан еще один показатель изменчивости - стандартное отклонение.

Определение. Стандартным отклонением случайной величины x называется неотрицательное число

SD [ X ] = + VD [X]. (3.33)

Итак, стандартное отклонениях однозначно связано с дисперсией.

В теории и практике статистических исследований также важную роль играют специальные функции - так называемые моменты (начальные и центральные), которые являются характеристиками случайных величин.

foto_00051.jpg